中国水稻科学 ›› 2017, Vol. 31 ›› Issue (3): 257-264.DOI: 10.16819/j.1001-7216.2017.6172 257
收稿日期:
2016-12-25
修回日期:
2017-02-28
出版日期:
2017-05-10
发布日期:
2017-05-10
通讯作者:
陈立云,肖应辉
基金资助:
Guilian ZHANG, Bin LIAO, Wenbang TANG, Liyun CHEN*(), Yinghui XIAO*(
)
Received:
2016-12-25
Revised:
2017-02-28
Online:
2017-05-10
Published:
2017-05-10
Contact:
Liyun CHEN, Yinghui XIAO
摘要:
【目的】本研究旨在筛选与稻米外观品质高温耐性连锁的分子标记,为稻米品质育种提供参考。【方法】以耐热水稻品系996和热敏感水稻品系4628为亲本构建的重组自交系为材料,采用垩白粒率耐热指数、垩白大小耐热指数和垩白度耐热指数为评价指标,对水稻垩白性状的高温耐性QTL进行检测。【结果】采用复合区间作图法两年共检测到垩白性状高温耐性QTL 24个,包括垩白粒率高温耐性QTL 8个,垩白大小高温耐性QTL 12个,垩白度高温耐性QTL 4个。其中,第6染色体上的2个垩白粒率高温耐性QTL和第7染色体上的2个垩白度高温耐性QTL在两年中重复检测到,且这2个稳定表达的垩白度位点与2015年检测到的第7染色体上的垩白粒率位点重合。另外,发现有4个QTL一因多效,同时影响垩白粒率、垩白大小及垩白度。【结论】控制垩白粒率耐热指数的qHTCGR6.1和控制垩白度耐热指数的qHTCD7.1是新的QTL。
中图分类号:
张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264.
Guilian ZHANG, Bin LIAO, Wenbang TANG, Liyun CHEN, Yinghui XIAO. Identifying QTLs for Thermo-tolerance of Grain Chalkiness Trait in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(3): 257-264.
性状 Trait | 年份 Year | 亲本 Parent | RIL群体RIL population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
996 | 4628 | 平均值Mean | 变幅Range | |||||||
垩白粒率耐热指数 Heat tolerance index of chalky grain rate | 2014 | 30.65±1.07 | 70.25±1.76 | 55.11±1.65 | 2.54~84.56 | |||||
2015 | 31.45±0.66 | 75.68±2.27 | 56.12±1.96 | 0.00~90.91 | ||||||
垩白大小耐热指数 Heat tolerance index of chalkiness size | 2014 | 40.78±1.43 | 65.78±1.64 | 42.29±1.23 | 11.3~65.53 | |||||
2015 | 41.12±1.53 | 70.14±2.10 | 44.11±1.54 | 2.76~95.23 | ||||||
垩白度耐热指数 Heat tolerance index of chalkiness degree | 2014 | 40.43±1.54 | 67.53±2.03 | 48.82±1.71 | 5.03~72.70 | |||||
2015 | 41.39±1.45 | 73.42±2.57 | 50.77±1.78 | 7.66~91.47 |
表1 双亲及RIL群体各株系垩白粒率、垩白大小和垩白度耐热指数
Table 1 Heat tolerance index of chalky grain rate, chalkiness size and chalkiness degree of two parents and their RIL population.
性状 Trait | 年份 Year | 亲本 Parent | RIL群体RIL population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
996 | 4628 | 平均值Mean | 变幅Range | |||||||
垩白粒率耐热指数 Heat tolerance index of chalky grain rate | 2014 | 30.65±1.07 | 70.25±1.76 | 55.11±1.65 | 2.54~84.56 | |||||
2015 | 31.45±0.66 | 75.68±2.27 | 56.12±1.96 | 0.00~90.91 | ||||||
垩白大小耐热指数 Heat tolerance index of chalkiness size | 2014 | 40.78±1.43 | 65.78±1.64 | 42.29±1.23 | 11.3~65.53 | |||||
2015 | 41.12±1.53 | 70.14±2.10 | 44.11±1.54 | 2.76~95.23 | ||||||
垩白度耐热指数 Heat tolerance index of chalkiness degree | 2014 | 40.43±1.54 | 67.53±2.03 | 48.82±1.71 | 5.03~72.70 | |||||
2015 | 41.39±1.45 | 73.42±2.57 | 50.77±1.78 | 7.66~91.47 |
图1 2014年和2015年RIL群体垩白粒率、垩白大小、垩白度耐热指数分布
Fig. 1. Frequency distribution of heat tolerance index of chalky grain rate, chalkiness size and chalkiness degree in RIL population in 2014 and 2015.
染色体 Chromosome | 位点 QTL | 标记区间 Marker interval | LOD值 LOD score | 加性效应 Additive effect | 贡献率 Phenotypic variations explained/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | ||||||
垩白粒率高温耐性Heat tolerance of chalky grain rate (HTCGR) | |||||||||||
1 | qHTCGR1.1 | RM297 | –RM6648 | 3.50 | 0.04 | 9.04 | |||||
1 | qHTCGR1.2 | RM6648 | –RM6387 | 3.48 | 0.04 | 8.48 | |||||
3 | qHTCGR3 | SFP3_1 | –RM231 | 3.30 | 0.04 | 7.91 | |||||
6 | qHTCGR6.1 | RM3353 | –RM1369 | 4.44 | 7.24 | 0.06 | 0.03 | 14.24 | 12.14 | ||
6 | qHTCGR6.2 | RM1369 | –RM190 | 4.78 | 7.47 | 0.06 | 0.04 | 17.89 | 14.25 | ||
7 | qHTCGR7.1 | RM3859 | 3.06 | 0.03 | 7.98 | ||||||
7 | qHTCGR7.2 | RM21327 | –RM21364 | 3.56 | 0.06 | 10.30 | |||||
7 | qHTCGR7.3 | RM21364 | –RM3859 | 3.44 | 0.05 | 7.66 | |||||
垩白大小高温耐性Heat tolerance of chalkiness size (HTCS) | |||||||||||
1 | qHTCS1 | RM8003 | –RM237 | 3.19 | –0.10 | 15.08 | |||||
2 | qHTCS2.1 | RM7245 | –RM6366 | 3.99 | 0.17 | 10.90 | |||||
2 | qHTCS2.2 | RM6366 | –RM1367 | 3.75 | 0.16 | 10.31 | |||||
4 | qHTCS4 | RM3866 | 2.90 | 0.16 | 7.35 | ||||||
6 | qHTCS6.1 | RM3353 | –RM1369 | 2.76 | –0.15 | 6.91 | |||||
6 | qHTCS6.2 | RM1369 | –RM190 | 2.65 | –0.19 | 10.74 | |||||
7 | qHTCS7.1 | RM21327 | –RM21364 | 3.03 | –0.17 | 7.86 | |||||
7 | qHTCS7.2 | RM21364 | –RM3859 | 4.02 | –0.25 | 18.76 | |||||
10 | qHTCS10.1 | RM6100 | –RM25678 | 4.07 | –0.14 | 11.60 | |||||
10 | qHTCS10.2 | RM25678 | –RM6745 | 3.69 | 0.14 | 10.58 | |||||
10 | qHTCS10.3 | RM6745 | –RM25681 | 4.00 | –0.14 | 11.40 | |||||
10 | qHTCS10.4 | RM25681 | –RM7300 | 3.02 | –0.13 | 9.68 | |||||
垩白度高温耐性 Heat tolerance of chalkiness degree (HTCD) | |||||||||||
1 | qHTCD1 | RM8003 | –RM237 | 2.98 | –0.10 | 11.54 | |||||
3 | qHTCD3 | RM6349 | –SFP31 | 4.81 | –0.17 | 36.34 | |||||
7 | qHTCD7.1 | RM21327 | –RM21364 | 4.68 | 5.54 | –0.15 | –0.14 | 13.27 | 17.44 | ||
7 | qHTCD7.2 | RM21364 | –RM3859 | 4.25 | 6.25 | –0.16 | –0.17 | 16.32 | 29.52 |
表2 垩白性状高温耐性QTL分析
Table 2 Mapping of heat tolerance QTL associated with grain chalkiness traits.
染色体 Chromosome | 位点 QTL | 标记区间 Marker interval | LOD值 LOD score | 加性效应 Additive effect | 贡献率 Phenotypic variations explained/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | ||||||
垩白粒率高温耐性Heat tolerance of chalky grain rate (HTCGR) | |||||||||||
1 | qHTCGR1.1 | RM297 | –RM6648 | 3.50 | 0.04 | 9.04 | |||||
1 | qHTCGR1.2 | RM6648 | –RM6387 | 3.48 | 0.04 | 8.48 | |||||
3 | qHTCGR3 | SFP3_1 | –RM231 | 3.30 | 0.04 | 7.91 | |||||
6 | qHTCGR6.1 | RM3353 | –RM1369 | 4.44 | 7.24 | 0.06 | 0.03 | 14.24 | 12.14 | ||
6 | qHTCGR6.2 | RM1369 | –RM190 | 4.78 | 7.47 | 0.06 | 0.04 | 17.89 | 14.25 | ||
7 | qHTCGR7.1 | RM3859 | 3.06 | 0.03 | 7.98 | ||||||
7 | qHTCGR7.2 | RM21327 | –RM21364 | 3.56 | 0.06 | 10.30 | |||||
7 | qHTCGR7.3 | RM21364 | –RM3859 | 3.44 | 0.05 | 7.66 | |||||
垩白大小高温耐性Heat tolerance of chalkiness size (HTCS) | |||||||||||
1 | qHTCS1 | RM8003 | –RM237 | 3.19 | –0.10 | 15.08 | |||||
2 | qHTCS2.1 | RM7245 | –RM6366 | 3.99 | 0.17 | 10.90 | |||||
2 | qHTCS2.2 | RM6366 | –RM1367 | 3.75 | 0.16 | 10.31 | |||||
4 | qHTCS4 | RM3866 | 2.90 | 0.16 | 7.35 | ||||||
6 | qHTCS6.1 | RM3353 | –RM1369 | 2.76 | –0.15 | 6.91 | |||||
6 | qHTCS6.2 | RM1369 | –RM190 | 2.65 | –0.19 | 10.74 | |||||
7 | qHTCS7.1 | RM21327 | –RM21364 | 3.03 | –0.17 | 7.86 | |||||
7 | qHTCS7.2 | RM21364 | –RM3859 | 4.02 | –0.25 | 18.76 | |||||
10 | qHTCS10.1 | RM6100 | –RM25678 | 4.07 | –0.14 | 11.60 | |||||
10 | qHTCS10.2 | RM25678 | –RM6745 | 3.69 | 0.14 | 10.58 | |||||
10 | qHTCS10.3 | RM6745 | –RM25681 | 4.00 | –0.14 | 11.40 | |||||
10 | qHTCS10.4 | RM25681 | –RM7300 | 3.02 | –0.13 | 9.68 | |||||
垩白度高温耐性 Heat tolerance of chalkiness degree (HTCD) | |||||||||||
1 | qHTCD1 | RM8003 | –RM237 | 2.98 | –0.10 | 11.54 | |||||
3 | qHTCD3 | RM6349 | –SFP31 | 4.81 | –0.17 | 36.34 | |||||
7 | qHTCD7.1 | RM21327 | –RM21364 | 4.68 | 5.54 | –0.15 | –0.14 | 13.27 | 17.44 | ||
7 | qHTCD7.2 | RM21364 | –RM3859 | 4.25 | 6.25 | –0.16 | –0.17 | 16.32 | 29.52 |
[1] | 林海, 庞乾林, 王志刚, 鄂志国. 2015年我国审定的水稻品种基本特性分析. 中国稻米, 2016, 22(6): 4-9. |
Lin H, Pang G L, Wang Z G, E Z G. Analysis on characteristics of rice varieties registered in China in 2015.China Rice, 2016,22(6): 4-9. (in Chinese) | |
[2] | 闵捷, 朱智伟, 章林平, 陈能, 许立, 牟仁祥. 中国超级杂交稻组合的稻米品质分析. 中国水稻科学, 2014, 28(2): 206-210 |
Min J, Zhu Z W, Zhang L P, Chen N, Xu L, Mou R X.Analysis on milled rice quality of super hybrid rice combinations in China.Chin J Rice Sci, 2014, 28(2): 206-210. (in Chinese with English abstract) | |
[3] | IPCC. Climate Change 2001: Scientific Basis. New York, USA: Cambridge University Press, 2001. |
[4] | 夏明元, 戚华雄. 高温热害对四个不育系配制的杂交组合结实率的影响. 湖北农业科学, 2004(2): 21-22. |
Xia M Y, Qi H X.Effect of high temperature heat stress on seed setting rate of hybrid combinations from four sterile lines.Hubei Agric Sci, 2004 (2): 21-22. (in Chinese) | |
[5] | 杨惠成, 黄仲青, 蒋之埙, 王相文. 2003年安徽早中稻花期热害及防御技术. 安徽农业科学, 2004, 32(1): 3-4. |
Yang H C, Huang Z Q, Jiang Z X, Wang X W.Heat damage and defense technology of early and middle rice at flowering stage in Anhui in 2003.Anhui Agric Sci, 2004, 32(1): 3-4. (in Chinese with English abstract) | |
[6] | 郑建初, 张彬, 陈留根, 杜群, 秦永生, 宋健, 张卫建. 抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业学报, 2005, 21(4):249-254. |
Zheng J C, Zhang B, Chen L G, Du Q, Qin Y S, Song J, Zhang W J.Genotypic differences in effects of high temperature in field on rice yield components and grain quality during heading stage.Jiangsu J Agric Sci, 2005, 21(4): 249-254. (in Chinese with English abstract) | |
[7] | 谢晓金, 李秉柏, 李映雪, 李昊宇, 赵小艳, 杨沈斌, 王志明. 抽穗期高温胁迫对水稻产量构成要素和品质的影响.中国农业气象, 2010, 31(3): 411-415. |
Xie X J, Li B B, Li Y X, Li H Y, Zhao X Y, Yang S B, Wang Z M.Effects of high temperature on rice yield components and grain quality during heading stage.Chin Agric Agrometeorol, 2010, 31(3): 411-415. (in Chinese with English abstract) | |
[8] | 石军, 褚旭东, 王志, 黄廷友, 李春财. 自然高温对15个籼稻杂交组合稻米品质的影响. 湖北农业科学, 2011, 50(5): 897-899. |
Shi J, Chu X D, Wang Z, Huang T Y, Li C C.Effect of natural high temperature on rice quality of 15 indica hybrid combinations.Hubei Agric Sci, 2011, 50(5): 897-899. (in Chinese) | |
[9] | Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics.Proc Natl Acad Sci USA, 1994, 91(12): 5466-5470. |
[10] | Chen X, Temnyk H S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice(Oryza sativa L.).Theor Appl Genet, 1997, 95: 553-567. |
[11] | Temnykh S, Park W D, Ayres N, Sam Cartinhour, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.).Theor Appl Genet, 2000, 100: 697-712. |
[12] | McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice(Oryza sativa L.).DNA Res, 2002, 9:199-207. |
[13] | International Rice Genome Sequencing Project.The map-based of the rice genome.Nature, 2005, 436: 793-800. |
[14] | Edwards J D, Janda J, Sweeney M T, Gaikwad A B, Liu B, Leung H, Galbraith D W.Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice.Plant Meth, 2008, 4: 13. |
[15] | Lincoln S, Daley M, Lander E.Constructing genetic maps with MAPMAKER/EXP 3.0//Whitehead Institute Technical Report. 3rd ed. Cambridge: Whitehead Institute, 1992. |
[16] | 何云丽, 叶乃忠, 郝明, 罗丽华, 肖应辉. 多环境下早籼稻重组自交系群体的抽穗期QTL分析. 中国水稻科学, 2013, 27(4): 389-397. |
He Y L, Ye N Z, Hao M, Lu L H, Xiao Y H.QTL analysis for heading date by using recombinant inbred lines derived from early-season indica rice across multi-environments.Chin J Rice Sci, 2013, 27(4): 389-397. (in Chinese with English abstract) | |
[17] | Zeng Z B.Precision mapping of quantitative trait loci.Genetics, 1994, 136: 1457-1468. |
[18] | Mei D Y, Zhu Y J, Yu Y H, Fan Y Y, Huang D R, Zhuang J Y.Quantitative trait loci for grain chalkiness and endosperm transparency detected in three recombinant inbred line populations of indica rice.J Integr Agric, 2013, 12: 1-11. |
[19] | 周立军, 刘喜, 江玲, 郑蕾娜, 陈亮明, 刘世家, 翟虎渠, 万建民. 利用CSSL和BIL群体分析稻米垩白粒率QTL及互作效应. 中国农业科学, 2009, 42(4): 1129-1135. |
Zhou L J, Liu X, Jiang L, Zheng L N, Chen L M, Liu S J, Zhai F Q, Wan J M.Analysis of QTL and GE effects on PGWC in rice (Oryza sativa L.) using CSSL and BIL populations.Sci Agric Sin, 2009, 42(4): 1129-1135. (in Chinese with English abstract) | |
[20] | Liu X, Wang Y and Wang S W. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa L).Gen Mol Res, 2012, 11: 717-724. |
[21] | 晁园, 冯付春, 高冠军, 朱雪萍,何予卿.利用重组自交系群体定位水稻品质相关性状的QTL. 华中农业大学学报, 2012, 31(4): 397-403. |
Chao Y, Feng F C, Gao G J, Zhu X P, He Y Q.Mapping QTLs related with rice qualities of appearance, cooking and eating using a recombinant inbred line population. J Huangzhong Agric Univ, 2012, 31(4): 397-403. (in Chinese with English abstract) | |
[22] | 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波. 不同生态地点下稻米外观品质性状的QTL定位分析. 中国水稻科学, 2011, 25(1): 43-51. |
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B.Identification of QTLs of rice appearance quality traits across different ecological sites.Chin J Rice Sci, 2011, 25(1): 43-51. (in Chinese with English abstract) | |
[23] | 王林森, 陈亮明, 王沛然, 王卓然, 郑海, 马宏阳, 江玲, 赵志刚, 万建民. 利用高世代回交群体检测水稻垩白相关性状QTL.南京农业大学学报,2016, 39(2): 183-190. |
Wang L S, Chen L M,Wang P R, Wang Z R, Zheng H, Ma H Y, Jiang L, Zhao Z G, Wan J M.Detecting the QTL of rice chalkiness traits using advanced backcrossing population.J Nanjing Agric Univ, 2016, 39(2): 183-190.(in Chinese with English abstract) | |
[24] | 朱昌兰. 稻低直链淀粉含量的遗传及品质形成对高温耐性的QTL分析. 南京: 南京农业大学, 2004. |
Zhu C L.Identifying QTLs for thermo-tolerance of quality formation and inheritance of low amylose content in rice. Nanjing: Nanjing Agriculture University, 2004. (in Chinese with English abstract) | |
[25] | 李健陵, 林育炯, 张晓艳, 杜尧东, 王华, 吴丽姬, 胡飞. 抽穗期和乳熟期高温对水稻剑叶理化特性以及产量和品质的影响. 农业现代化研究, 2013, 34(11): 109-113. |
Li J L, Lin Y J, Zhang X Y, Du Y D, Wang H, Wu L J, Hu F.Effects of high temperature on physiological and biochemical characteristics of flag leaves, grain yield and quality of rice in heading and milk stage. Res Agric Mod, 2013, 34(11): 109-113. (in Chinese with English abstract) | |
[26] | 张桂莲, 陈立云, 张顺堂, 黄明, 唐文邦, 雷东阳, 李梅华, 贺治洲. 高温胁迫对水稻花器官和产量构成要素及稻米品质的影响. 湖南农业大学学报, 2007, 33(2): 132-136. |
Zhang G L, Chen L Y, Zhang S T, Huang M, Tang W B, Lei D Y, Li M H, He Z Z.Effects of high temperature stress on rice flower organ and yield components and grain quality. J Hunan Agric Univ, 2007, 33(2): 132-136. (in Chinese with English abstract) | |
[27] | 张国发, 王绍华, 尤娟, 王强盛, 丁艳锋, 吉志军. 结实期不同时段高温对稻米品质的影响. 作物学报, 2006, 32(2): 283-287. |
Zhang G F, Wang S H, You J, Wang Q S, Ding Y F, Ji Z J.Effect of higher temperature in different filling stages on rice qualities.Acta Agron Sin, 2006, 32(2): 283-287.(in Chinese with English abstract) | |
[28] | 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响.中国水稻科学, 2007, 21(4): 396-402. |
Sheng Q, Tao H J, Chen L G.Response of seed-setting and grain quality of rice to temperature at different time during grain filling period.Chin J Rice Sci, 2007, 21(4): 396-402.(in Chinese with English abstract) | |
[29] | 赵飞, 尹维娜, 曲丽君, 东丽, 华泽田. 水稻外观品质与产量构成因素的QTL解析. 核农学报, 2014, 28(6): 990-997. |
Zhao F, Yin W N, Qu L J, Dong L, Hua Z T.Correlation and QTL analysis of the rice appearance quality and processing quality.J Nuclear Agric Sci, 2014, 28(6): 990-997. (in Chinese with English abstract) | |
[30] | 陶亚军, 徐梦彬, 王飞, 陈达, 周勇, 梁国华. 利用染色体单片段代换系定位水稻垩白QTL. 华北农学报, 2015, 30(1): 1-8. |
Tao Y J, Xu M B, Wang F, Chen D, Zhou Y, Liang G H.QTL mapping of chalkiness using chromosome single segment substituted lines in rice.Acta Agric Boreali-sin, 2015, 30(1): 1-8. (in Chinese with English abstract) | |
[31] | 盘毅, 罗丽华, 邓化冰, 张桂莲, 唐文邦, 陈立云, 肖应辉. 水稻开花期高温胁迫下的花粉育性QTL定位. 中国水稻科学, 2011, 25(1): 99-102. |
Pan Y, Luo L H, Deng H B, Zhang G L, Tang W B, Chen L Y, Xiao Y H.Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice.Chin J Rice Sci, 2011, 25(1): 99-102. (in Chinese with English abstract) | |
[32] | Yamakawa H, Ebitani T, Terao T.Comparison between locations of QTLs for grain chalkiness and genes responsive to high temperature during grain filling on the rice chromosome map.Breeding Sci, 2008, 58(3): 337-343. |
[33] | 高方远, 邱玲, 陆贤军, 任鄄胜, 吴贤婷, 任光俊, 曾礼华. 杂交籼稻骨干保持系岗46B稻谷粒形及垩白的QTL分析. 中国水稻科学, 2014, 28(3): 235-242. |
Gao F Y, Qiu L, Lou XJ, Ren Z S, Wu X T, Ren G J, Zeng L H.QTL analysis on grain shape and chalkiness of an elite maintainer line Gang 46B in hybrid rice(Oryza sativa L.).Chin J Rice Sci, 2014, 28(3): 235-242. (in Chinese with English abstract) |
[1] | 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异[J]. 中国水稻科学, 2024, 38(1): 57-71. |
[2] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
[3] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[4] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
[5] | 杨陶陶, 邹积祥, 伍龙梅, 包晓哲, 江瑜, 张楠, 张彬. 开放式增温对华南双季稻稻米品质的影响[J]. 中国水稻科学, 2023, 37(1): 66-77. |
[6] | 景文疆, 顾汉柱, 张小祥, 吴昊, 张伟杨, 顾骏飞, 刘立军, 王志琴, 杨建昌, 张耗. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学, 2022, 36(5): 505-519. |
[7] | 杨晨, 郑常, 袁珅, 徐乐, 彭少兵. 再生稻肥料管理对不同品种产量和品质的影响[J]. 中国水稻科学, 2022, 36(1): 65-76. |
[8] | 闫浩亮, 王松, 王雪艳, 党程成, 周梦, 郝蓉蓉, 田小海. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系[J]. 中国水稻科学, 2021, 35(6): 617-628. |
[9] | 陈喜娜, 袁泽科, 胡珍珍, 赵全志, 孙红正. 利用QTL-Seq定位粳稻整精米率QTL[J]. 中国水稻科学, 2021, 35(5): 449-454. |
[10] | 唐先干, 谢金水, 徐昌旭, 刘佳, 袁福生, 刘光荣, 李祖章. 红壤性稻田紫云英与化肥减施对早稻品质与养分吸收的影响[J]. 中国水稻科学, 2021, 35(5): 466-474. |
[11] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
[12] | 王志东, 陈宜波, 龚蓉, 周少川, 王重荣, 李宏, 黄道强, 周德贵, 赵雷, 潘阳阳, 杨义强, 李晓芳. 优质籼稻剑叶SPAD值与稻米品质相关性研究[J]. 中国水稻科学, 2021, 35(1): 89-97. |
[13] | 文春燕, 熊运华, 姚晓云, 陈春莲, 胡标林, 黄永萍, 吴延寿. 氮肥施用对米粉专用稻产量、米质及加工特性的影响[J]. 中国水稻科学, 2020, 34(6): 574-585. |
[14] | 汪浩, 刘祥臣, 张强, 余贵龙, 张文地, 黄健, 朱安, 刘立军. 豫南地区头季和再生季水稻产量与品质差异分析[J]. 中国水稻科学, 2020, 34(5): 425-434. |
[15] | 陈专专, 杨勇, 冯琳皓, 孙晔, 张昌泉, 范晓磊, 李钱峰, 刘巧泉. Wx与ALK主要等位基因不同组合对稻米品质的影响[J]. 中国水稻科学, 2020, 34(3): 228-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||